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Abstract. The diagrammatic cumulant expansion for the periodic Anderson model with infinite
Coulomb repulsion (U = ∞) is considered here for an hypercubic lattice of infinite dimension
(d = ∞). The nearest neighbour hopping of the uncorrelated electrons is described exactly by a
conduction band, while two different models of hybridization are treated as a perturbation. The
same type of simplifications obtained by Metzner for the cumulant expansion of the Hubbard
model in the limit ofd = ∞, are also shown to be valid for the periodic Anderson model.
The derivation of these properties had to be modified because of the exact treatment of the
conduction band.

1. Introduction

The periodic Anderson model (PAM) gives a schematic description of very important
systems with strongly correlated electrons, and there are several recent reviews on this
subject [1]. The model consists of a lattice with two localized electronic states at each
site, strongly correlated by a Coulomb repulsionU , plus a band of uncorrelated conduction
electrons (c-electrons) that hybridize with the localized electrons (f-electrons). The cumulant
expansion of the PAM discussed in this work is a perturbative expansion around the
atomic limit, and is an extension [2] of the method originally employed by Hubbard [3] to
study his well known model of correlated itinerant electrons [4]. He introduced operators
Xj,ba = |j, b〉〈j, a|, that transform the local state|a〉 at site j into the local state|b〉 at
the same site, and developed a diagrammatic method that circumvents the fact that theX

operators are neither fermions nor bosons. His work was the first application of the cumulant
expansion to a quantum system of fermions [5] and has several desirable properties: it seems
to be a natural extension of the usual diagrammatic techniques, it does not have excluded
site problems in the lattice summations and it is possible to derive a linked-cluster expansion
for the grand-canonical potential (see [2] for more details). At the same time, the use ofX

operators allows us to work in a subspace of the whole space of local states, that contains
only the states that are relevant to the problem of interest. It therefore seems useful to
understand this method better, and the main purpose of this paper is to study the properties
of the cumulant expansion for the PAM in the limit of infinite spatial dimensions (d →∞).

Metzner and Vollhardt [6] have recently applied the limitd →∞ to strongly correlated
fermion systems, providing non-trivial models of the Hubbard type that are substantially
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simpler to analyse. This development has stimulated many new works and we should
mention the very successful dynamical mean field theory [7], that uses local properties of
the self energy ford → ∞ as a starting point. Several methods have been employed to
study the PAM in this limit [8–11], the cumulant expansion of the Hubbard model was
reconsidered by Metzner [12], showing that there is an important reduction in the number
and type of cumulant diagrams that appear in the expansion whend →∞ in an hypercubic
lattice. In the Hubbard model there is no hybridization and the hopping Hamiltonian is used
as a perturbation, while the PAM is usually employed to model systems with a bandwidth
much larger than the hybridization energies and it is then preferable to diagonalize the
conduction band and use the hybridization Hamiltonian as a perturbation. It was then
necessary to make substantial modifications to Metzner’s derivation in order to apply it to
the PAM whend →∞.

In the following sections two types of hybridization models are considered: the purely
‘local’ hybridization and the ‘nearest-neighbour’ (n.n.) one. In the n.n. hybridization there
are electronic transitions between localized (‘f’) states at a site and conduction Wannier
states at the nearest-neighbour sites, while in the local hybridization those transitions only
occur at the same site. The same type of diagram cancellation obtained by Metzner for the
Hubbard model is obtained for these two hybridization models in the PAM.

As the local hybridization between f and d or s electrons should vanish when the site
has inversion symmetry, the n.n. hybridization discussed in this paper is more realistic
than the local one, because it does not necessarily vanish for that type of site. The local
approximation is usually employed because it makes the calculation simpler; and the changes
introduced by an interatomic hybridization have been already discussed in the case of a
diatomic-molecule model [13].

2. The hypercubic lattice

Let us consider free electrons in an hypercubic lattice of dimensiond, described by a
Hamiltonian [14]

Hc =
∑
n,m,σ

tn,mC
†
n,σCm,σ (2.1)

with translational invariance. The position of the siten = (n1, . . . , nd) is given by
Rn =

∑d
α=1 eαnα, where|eα| = a is the lattice parameter and thenj are integers. Only n.n.

hopping shall be considered, so thattn,m is non-zero and equal to−t when the components
mα ofm satisfymα = nα+δα,γ for γ = 1, 2, . . . , d. Employing the Wannier transformation

Cn,σ = 1√
N

∑
k,σ

Ck,σ exp[ik ·Rn] (2.2)

with k satisfying cyclic boundary conditions, one obtains

Hc =
∑
k,σ

EkC
†
k,σCk,σ (2.3)

where

Ek = −2t
d∑
s=1

cos(ksa). (2.4)

The electronic Green’s functions (GF) for imaginary time are defined by [2]

Gσ(k,τ ) ≡ 〈(Ck,σ (τ )C†k,σ )+〉 (2.5)
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where Ck,σ (τ ) ≡ exp[Hcτ ]Ck,σ exp[−Hcτ ] and the subindex+ in equation (2.5) is
the usual chronological ordering of Fermi operators, withτ increasing to the left. To
emphasize that the hybridization was not considered in these GF, they will be denoted with
G0
σ (k,τ ), and after Fourier transformation in the imaginary timeτ they are given by [15]

G0
σ (k,ων) = −(iων −Ek)−1. To obtain a finite average energy per site whend →∞, it is

necessary to renormalizeHc, taking a finitet in the non-zerotn,m = −t/
√

2d (i.e. whenn
andm are n.n.). In that limit the energy density of states is given by [14]

ρd(E) = 1√
2πt2

exp

[
−E

2

2t2

]
(2.6)

and

〈(E(k))2〉 = t2. (2.7)

The exact solution ofHc is used in the present treatment of the PAM, employing the
hybridization as a perturbation. To study the behaviour of the cumulant expansion in the
limit d →∞, it is convenient to consider the direct space GF, given by

G0
σ (Rn,m, ων) ≡ 1

N

∑
k

G0
σ (k,ων) exp[ik ·Rn,m] (2.8)

whereRn,m = Rn − Rm, as well as its dependence with the minimum numberp of
n.n. jumps necessary to go fromm to n. When the GF are obtained for larged using
the hopping as a perturbation, one immediately shows thatG0

σ (Rn,m, ων) ' O|θ |, where
θ = t/√2d. A similar result is obtained for the ‘exact’G0

σ (Rn,m, ων) of equation (2.8),
but the discussion will be postponed to a later section, in which a more general property
will be shown.

3. The Hamiltonian of the PAM

The Hamiltonian of the whole system is

H = Hc+Hf +Hh (3.1)

whereHc is the Hamiltonian of the c-electrons discussed in section 2. The second term
Hf =

∑
j,σ EσXj,σσ describes independent f-electrons, where a simple indexj has been

used to indicate the sitesn. The last term is the hybridization Hamiltonian [2], giving the
interaction between the c- and f-electrons:

Hh =
∑
j,k,σ

(Vj,k,σX
†
j,0σCk,σ + V ∗j,k,σC†k,σXj,0σ ). (3.2)

The state space of the f-electrons, at a given sitej , is spanned by four states: the vacuum
state|j, 0〉, the two states|j, σ 〉 of one f-electron with spin componentσ and the state|j, 2〉
with two electrons of opposite spin. In the limit of infinite electronic repulsion (U = ∞)
considered here, the state|j, 2〉 is always empty, and can be projected out of the space. The
operatorXj,0σ destroys the electron in state|j, σ 〉 leaving the site in the vacuum state|j, 0〉
with energyEj,0 = 0, and its Hermitian conjugateX†j,0σ = Xj,σ0 reverses that process. The
Hubbard operatorsXj,ab are not usually Fermi or Bose operators, and a product rule:

Xj,abXj,cd = δbcXj,ad (3.3)

should be employed when the two operators are at the same site. For different sites one
should first classify the operators in two families:Xj,ab is of the ‘Fermi type’ when|a〉
and |b〉 differ by an odd number of Fermions, and it is of the ‘Bose type’ when they
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differ by an even number of Fermions. At different sites, two X operators of the Fermi type
anticommute, and they commute when at least one of them is of the Bose type. To complete
the definition, theXj,ab should anticommute (commute) with theC†k,σ andCk,σ when they
are of the Fermi type (Bose type). Sometimes it will be convenient to employX(γ ) to
describe the Hubbard operators, whereγ = (j, α, u), andα = (b, a) gives the transition
|a〉 → |b〉 that destroys one electron, i.e. with|b〉 having one electron less than|a〉 as in
[15], and it is often convenient to abbreviate(γ, τ ) = `. The indexu is then introduced to
describe the inverse transition, so thatX(γ ) = Xj,α whenu = − andX(γ ) = X†j,α when
u = +, and for the PAM withU = ∞ there are only two possible transitionsα = (0, σ ).

The grand canonical ensemble (GCE) of electrons is employed in this problem, and it
is useful to introduce

H = H − µ
(∑
k,σ

C
†
k,σCk,σ +

∑
j,a

νaXj,aa

)
(3.4)

whereνa is the number of electrons in state|a〉 andµ is the chemical potential. As usual
H is split into

H = H0+Hh (3.5)

whereHh will be the perturbation Hamiltonian, and the exact and unperturbed averages
of any operatorA will be denoted respectively by〈A〉H and 〈A〉. It is also convenient to
denote the exact or Heisenberg ‘τ evolution’ of any operatorA with

Â(τ ) = exp(Hτ)A exp(−Hτ) (3.6)

and employA(τ) = exp(H0τ)A exp(−H0τ) for the unperturbed case. It is convenient to
use the expressions

εj,a = Ej,a − νaµ and εk,σ = Ek,σ − µ (3.7)

because the energies almost always appear in those combinations.
The c-electron GF employed in the cumulant expansion are:

Go
c,σ (k,ω) = −

1

iω − εk,σ (3.8)

where the subindexc was added to differentiate them from the unperturbed GF of the
f-electron and

Go
f,σ (ω) = −

D0
σ

iω − εσ (3.9)

whereD0
σ = 〈Xσσ 〉 + 〈X00〉. Although theGo

f,σ (ω) is also a GF in the reciprocal space, it
is independent ofk because it corresponds to a band of zero width.

3.0.1. The two Hybridization models.The general hybridization coefficients are given by
(cf [2, equation (2.3)])

Vj,k,σ = 1√
Ns
Vσ (k) exp(ik · Rj). (3.10)

The hybridization is purely local whenVσ (k) = V 0
σ is independent ofk, because using the

Wannier transformation (cf equation (2.2)) in equation (3.2) it follows that

Hh =
∑
j,σ

(V 0
σ X
†
j,0σCj,σ + (V 0

σ )
∗C†j,σXj,0σ ). (3.11)
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Figure 1. Typical cumulant diagrams for one-particle GF. (a) The diagrams of the CHA for
the f-electron, represented by the closed square to the right. (b) As (a) but for the c-electrons,
represented by an open square. (c) A more complicated diagram, with cumulants of fourth and
sixth order.

TheHh that corresponds to n.n. hybridization is

Hh =
∑
j,δ,σ

(VσX
†
j+δ,0σCj,σ + (Vσ )∗C†j,σXj+δ,0σ ) (3.12)

where the vectorsδ give the position of thed n.n. sites of the origin, and the corresponding
Vσ (k) is immediately obtained:

Vσ (k) = 2Vσ
d∑
α=1

cos(kαa) = −Vσ
t
Ek,σ . (3.13)

3.1. The chain approximation

Some of the infinite diagrams that contribute to the exact GF〈(X̂j,α(τ )X̂j ′,α)+〉H are shown
in figure 1. The full circles (f-vertices) correspond to the cumulants of the f-electrons
and the open ones (c-vertices) to those of the c-electrons. Each line reaching a vertex is
associated with one of theX operators of the cumulant, and the free lines (i.e. those that do
not join an open circle) correspond to the externalX operators appearing in the exact GF.
An explicit definition of the cumulants can be found in [2, 3, 15], and they can be calculated
by employing a generalized Wick’s theorem [15–17].

The first diagram in figure 1(a) corresponds to the simplest free propagator
〈(Xj,α(τ )Xj ′,α′)+〉, and the second diagram in that figure has an open circle that corresponds
to the conduction electron cumulant, equal to the free propagator〈(Ckσ (τ )C†kσ )+〉. The
interaction is represented by the lines (edges) joining two vertices and, because of the
structure of the hybridization, they always join a c-vertex to an f-vertex; the number of
edges in a diagram gives its order in the perturbation expansion.

Cumulants containing statistically independent operators are zero, and those appearing
in the present formalism (with the hybridization as a perturbation) vanish unless they contain
only X operators at the same site or onlyC or C† operators with the samek andσ . The
only non-zero c-cumulants are of second order, because the uncorrelated c-operators satisfy
Wick’s theorem. On the other hand, the f-vertices can have many legs, all corresponding
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to X operators at the same site, like the fourth and sixth order cumulants appearing in the
rather more complicated diagram shown in figure 1(c).

All the infinite diagrams that contribute to the GF of the f-electron with cumulants of
at most second order are shown in figure 1(a), and they define the ‘chain approximation’
(CHA) when all the other diagrams are neglected. The corresponding approximation for
the GF of the c-electrons corresponds to the diagrams of figure 1(b). The diagrams of the
CHA usually appear as part of more complicated diagrams, and it is then useful to analyse
their behaviour whend →∞. In the CHA, the GF is given in frequency andk space by
(cf [15, equation (3.10)])

Gf,σ (k, ω) = −(iω − εkσ )D0
σ

(iω − εσ )(iω − εkσ )− |V (k)|2D0
σ

(3.14)

and it would be useful to transform it back to real space to show the dependence with the
distanceRi,j between the two sitesi andj , as was done in equation (2.8) for the conduction
electrons. Because of the lattice translational invariance, it is enough to use the distance
Rj of the sitej to the origin, and characterize this site with ann = (n1, . . . , nd), (cf
section 2). The set of indicesr with nr 6= 0 will be denoted with{r}j , while s(j) =∑d

1 ns
is the minimum number of n.n. jumps necessary to go from the origin to the sitej . In both
the local and the n.n. hybridization models, theGf,σ (k, ω) depends onk only through the
εkσ = Ekσ − µ, and for any given sitej one can write

Ekσ = Eσ ({r}j ,k)− θ
∑
s∈{r}j

cos(aks) (3.15)

where

Eσ ({r}j ,k) = −θ
∑
s /∈{r}j

cos(aks) (3.16)

andθ = t/√2d. Substituting this relation in equation (3.14) one can expand it in a power
series of all the cos(aks) with s ∈ {r}j and then transform back to real space to obtain
Gf,σ (Rj , ω). Employing the relation∑

ks

cosm(ksa) exp(insksa) = 0 for m < ns (3.17)

which is a consequence of the cyclic boundary conditions, it follows that

Gf,σ (Rj , ω) = O|(2d)−s(j)/2|· (3.18)

The GF for the conduction electrons in the CHA, corresponding to the diagrams in
figure 1(b), is given by:

Gc,σ (k, ω) = −(iω − εσ )
(iω − εσ )(iω − εkσ )− |V (k)|2D0

σ

(3.19)

and employing the same derivation used above for the f-electrons it follows that
Gc,σ (Rj , ω) = O|(2d)−s(j)/2|. The same relation is obtained in the absence of hybridization,
as stated at the end of section 2 forG0

σ (Rn,m, ων).
To close this section let us emphasize that the present expansion employsHh as a

perturbation, and that the exact solution of the conduction problem in the absence of
hybridization is included in the zeroth order Hamiltonian. The contribution to the GF
joining two sites separated bys(j) n.n. jumps, that is of order|(2d)−s(j)/2|, includes then
contributions of any order in theHc. It is because of this difference that the derivation of
Metzner [12] for the Hubbard model had to be modified for the present problem.

All the contributions ofHc would disappear in the case of a band with zero width, but
the electronic wavefunctions would still be extended for the model with n.n. hybridization.
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a)

b)

c)

d)

i j

i=j

Figure 2. Examples of relevant topologies in the limitd →∞. (a) f.t.p.r.: any pair of vertices
can be separated by cuting two edges. Note that all pairs of loops have at most one vertex
in common. (b) The diagram is not f.t.p.r. (c) The topology of the diagram and that of the
embedding are the same wheni 6= j . (d) The embedding topology that corresponds to the
diagram in (c) when i = j .

4. The contribution of diagrams for infinite dimension

In this section it will be shown that the only diagrams that remain in the limitd →∞ are
those that are topologically ‘fully two-particle reducible’ (f.t.p.r.). These diagrams are de-
fined as those in which any pair of vertices can be separated by cutting one or two edges [18],
and are ‘topologies constructed by linking polygons’ [12]. Two points should be made here:
the first is that two different polygons (also called loops or rings in what follows) can have
at most one vertex in common in the f.t.p.r. topology (see figure 2(a) and (b)). The second
point, already stressed by Metzner for the Hubbard model, [12] is that the topology of a
diagram can be different from those of its possible embeddings in the lattice, because in the
cumulant expansions there is no excluded site restriction in the lattice sums [2], and two
different vertices of a diagram can occupy the same site (see figure 2(c) and (d). The prop-
erty stated above refers to the topology of the embeddings, and in the sum of contributions
of diagrams that are not f.t.p.r. there may be terms that give non-zero contributions because
they correspond to a f.t.p.r. topology of the embedding: the diagram in figure 2(c) could
contribute whenj = i, because the topology of its embedding, given by figure 2(d), is f.t.p.r.
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c)

+ . . .

a)

b)

d)

e)

j

+= + . . .

+=j1 j1

l1

l2

i j

Figure 3. (a) The sum of all the simple loops of any length. (b) Diagrams of an insertion with
contributionS0

2(j1; `1, `2), obtained by fixing the sitej1 and the parameters̀1, `2 of one local
f-vertex (that is considered external) of the diagrams in (a). The full circle in these vertices,
corresponding to the cumulantM0

2(j1; `1, `2) , is removed from the diagrams and is replaced
by 1 in S0

2(j1; `1, `2). (c) A f.t.p.r diagram obtained by joining two simple loops at an f-vertex.
(d) Family of four linked loops that give a f.t.p.r diagram. (e) Family of diagrams obtained by
linking two loops at two different f-vertices: it is not f.t.p.r.

To prove this property it is necessary to modify the derivation given by Metzner for
the Hubbard model, for the same reasons given in section 3.1 for the GF dependence on
s(i). The proof of this property is given in the following two subsections, and it can be
summarized as follows. Consider first the diagram in figure 3(a), that corresponds to the
sum of loops with all possible lengths. All the embeddings of these diagrams are f.t.p.r., and
they give a non-zero contribution to the calculation of the free energy. As a second step,
one can consider diagrams like those in figures 3(c) and (d), obtained by linking loops of
any length at different f-vertices. One could obtain all these diagrams by a procedure similar
to the vertex renormalization [2, 5, 12], with the difference that only insertions of a rather
special type are considered. All these diagrams, as well as their embeddings, are f.t.p.r.
and a finite contribution of all of them is expected. The next step is to consider diagrams
that are not f.t.p.r. like the one shown in figure 3(e), that can be obtained by joining two
loops (as in figure 3(a)) at two different f-vertices. If the family in figure 3(a) gives a
finite contribution, one can show that all the contributions to the diagram in figure 3(e)
will vanish when the topology of the embedding coincides with that of the diagram, i.e.
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when the embedding is not f.t.p.r., as would happen wheni 6= j . In the special case of
i = j , (cf figures 2(c) and (d) for a special case of this situation) the embedding is f.t.p.r.
and the diagram contribution does not necessarily vanish. Of the two sums over the lattice
sites i and j , only one overi = j remains in the limitd → ∞, and this simplifies the
calculation of this diagram. In particular, the restriction that in reciprocal space there must
be conservation ofk at each vertex is removed [6, 14], leaving only a single conservation of
k for all the edges joining the collapsed vertices: this makes the calculation of the diagram
much simpler in the limitd →∞.

4.1. The f.t.p.r. diagrams

To prove that the contribution of a f.t.p.r. diagram can be finite, let us consider the family
of diagrams represented in figure 3(a). Their contribution does not vanish and can be
expressed as∑

j1

∫
d`1

∫
d`2 S

0
2(j1; `1, `2)M

0
2(j1; `1, `2) (4.1)

where

M0
2(j1; `1, `2) = 〈(X(`1)X(`2))+〉c (4.2)

is a local cumulant [2] and
∫

d`s =
∑

αs

∑
us

∫ β
0 dτs . The abbreviationss ≡

`s and
∫

ds ≡ ∫
d`s will be used when there is no possibility of confusion.

The symbol S0
2(j1; `1, `2) ≡ S0

2(j1; 1, 2) corresponds closely to the ‘self-field’ [5]
Sm(j1; `1, `2, . . . , `m) ≡ Sm(j1; 1, 2, . . . , m), that was employed in [15] to renormalize
vertices, but it gives only ‘insertions’ obtained from simple loops of any length, as
represented by the diagrams in figure 3(b); by definition, all thè s correspond to the same
site, indicated byj1. The notationM0

2(j1; `1, `2) ≡ M0
2(j1; 1, 2) has the same meaning,

and reflects the fact that this cumulant is zero unlessj1 = j2 becauseX(`1) andX(`2) are
statistically independent in the unperturbed system whenj1 6= j2. Note thatS0

2(j1; `1, `2)

depends explicitly on the parametersj1; `1, `2 (where`i representsji, ui, αi = (0, σi) for
i = 1, 2) through the two hybridization constantsVj,k,σ associated with the edges joining
the insertion vertex.

To consider the addition of a simple loop to any f-vertex of a diagram, it is convenient
to consider first the simplest possible case, shown in figure 3(c): its contribution is obtained
by substituting the cumulantM0

2(j1; 1, 2) in equation (4.1) by∫
d3
∫

d4M0
4(j1; 1, 2, 3, 4)S0

2(j1; 3, 4). (4.3)

When the loop is added to a sitej1 that is already joined byn edges, the corresponding
cumulantM0

m(j1; 1, 2, . . . , m) suffers a similar substitution. Repeated application of this
procedure at all f vertices gives all the possible f.t.p.r diagrams, and as the cumulants are
independent of the lattice dimensiond and of the sitej , this procedure should not affect
the order of the contribution with respect tod. The simple loops of figure 3(a) give a finite
contribution, so that the contribution of any f.t.p.r diagrams is then of O(|d|0).

A similar type of procedure can be applied to the CHA diagrams of the one-particle
GF, by successive decoration of the f-vertices with any number of insertions corresponding
to theS0

2(j1; `1, `2) discussed above. It is then clear that these diagrams will still be f.t.p.r.,
and that the corresponding GF joining two sites separated bys n.n. jumps will be of
O|(2d)−s/2|, as shown in section 3 for the CHA.
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a)

b)

+

---> + +

-->

+ +-->c)

Figure 4. Three examples of separation of a mother vacuum diagram into several daughter
diagrams. (a) Simplest case of separation with two common vertices. (b), (c) Separation in
three daughter diagrams with a total of four shared vertices.

4.2. The diagrams that are not f.t.p.r.

To analyse the diagrams that are not f.t.p.r., consider any one of them as a ‘mother’ diagram,
and split it into two or more f.t.p.r linked ‘daughter’ diagrams without any edges in common
but such that any of them has at least two vertices in common with another daughter diagram,
as well as two edges arriving at each of the common vertices. It is clear that any pair of
vertices that are common to two daughter diagrams cannot be separated in the mother
diagram by cutting one or two edges, and one says that they are not ‘two-particle reducible’
(t.p.r.).

From all the daughter diagrams choose one as a vacuum diagram and transform
the remaining ones into GF by adding external lines of the Bose type (as indicated in
appendix A) to all the vertices that each of them had in common with any other daughter
diagram in the mother diagram. Three examples of this procedure are given in figure 4.

Consider now the real space calculation of the contribution of the daughter diagrams. In
appendix A it is shown that by joining one daughter GF to another diagram and fixing the
position of the common vertices, one obtains the order of the contribution of the resulting
diagram as the product of those of the building diagrams. In appendix B it is shown that
unless all the external f-vertices of one daughter GF coincide at the same lattice site, the
corresponding contribution is of O|(θ)p| with p > 1, whereθ = t/√2d. Taking now the
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a)

b)

c)

i j

i j

i=j

Figure 5. (a) A family of f.t.p.r diagrams that give a finite contribution for larged. (b) Family
of diagrams obtained by joining pairs of f.t.p.r diagrams in two common vertices; the diagrams
are not f.t.p.r. (c) The f.t.p.r topology of the embedding of (b) when i = j . Note that the
diagram contribution is calculated with the diagram (b) and not with (c), but replacing the two
independent summations overi andj by a single one overi = j .

only daughter vacuum diagram and adding successively all the other daughter GF diagrams,
the total contribution for given positions of all the GF external vertices will then be O|(θ)p|
with p > 1, unless all the external vertices of each daughter GF coincide at the same
lattice site, that can be different for different daughter GF. A typical example of this type of
diagram is given in figure 5(b), while figure 5(c) shows the corresponding f.t.p.r. topology
of the embedding when the vertices that are not t.p.r. in the diagram are at the same lattice
site.

It is then clear that in the sum over the vertices that are common to all the daughter
diagrams, each of the terms will be at best of O|θ |, and would vanish in the limitd →∞,
unless all the external vertices of each daughter diagram are at the same lattice site, that
can be different for different daughter diagrams. One can conclude that the contribution
of the mother diagram would vanish when any pair of verticesi and j that are not t.p.r.
occupy different lattice sites, because in that case, it is always possible to separate from the
mother diagram a daughter GF that hasi and j in common with the rest of the diagram.
In that case, only a sum overi = j should remain from the unrestricted sum overi and
j, and those two vertices then become t.p.r. in the embedding of the diagram (this is
illustrated in figures 5(b) and (c)). This reduction of the terms that contribute to the lattice
summations has already been described, and called ‘collapse of vertices’, in the study of
theU -perturbation theory in high dimensions [14, 18]: this property will be given the same
name in this work.

One important point to notice, is that the collapse of vertices occurs only in the
embedding of the diagram, and that the rules for calculating the contribution should be
applied to the original diagram (i.e. it would be the diagram of figure 5(b) in the examples
given) and not to the collapsed diagram of the embedding (i.e. the diagram in figure 5(c)).
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As in the collapse ofi andj the two independent lattice summations over the vertices
i and j are replaced by a single lattice summation overi = j , it is easy to see from
the derivation of the contribution rules in reciprocal space (cf [2, section III D]) that the
two independent momentum conservation at each of the two collapsed vertices becomes
a single conservation of the wavevectors corresponding to all the internal edges joining
them. When all the pairs of vertices that are not t.p.r. have been collapsed, one can see
that at every vertex of the embedding of a vacuum or one-particle GF diagram, all the
edges can be arranged in pairs with momentumks and−ks respectively (cf figure 5(c) as a
typical example) It then follows that the momentum conservation at the collapsed vertices
are automatically satisfied, and most of the usual restraints on the momentum integration
disappear in the limitd →∞.

5. Summary and conclusions

The cumulant expansion of the PAM [2] was considered in the limit of infinite spatial
dimensions (d →∞) for two types of hybridization models: the purely ‘local’ hybridization
and the ‘n.n.’ one. As the systems usually described by the PAM have a bandwidth much
larger than the hybridization energies, the unperturbed Hamiltonian is chosen to include the
exact solution of the c-band electrons in the absence of hybridization. It is then necessary
to modify the derivation employed by Metzner [12] for the cumulant expansion of the
Hubbard model, in which the hopping Hamiltonian is used as a perturbation. The basic
result presented here is that in spite of this change the PAM shows, for the two hybridization
models considered, the same type of simplifications that occur in the diagrammatic cumulant
expansion of the Hubbard model whend →∞.

Only the linked diagrams contribute to the general cumulant expansion, and there is
a vertex collapse whend → ∞ for those diagrams that are not f.t.p.r. A diagram is not
f.t.p.r. when at least two verticesi andj can not be separated by cutting only one or two
edges of the diagram, and their collapse means that from the two independent summations
over i andj that are necessary to calculate their contribution, only a summation overi = j
remains. The topology of the embedding is different from that of the diagram itself when
i = j , and the collapse is repeated until the topology of the embedding becomes f.t.p.r.
One important point to note is that, after the collapse of vertices, the rules for calculating
the contribution should be applied to the original diagram and not to the collapsed diagram
of the embedding.

When the two independent summations overi and j of the diagram become a single
summation overi = j because the two verticesi and j collapse, the two separate
conservations ofk at these vertices become a single conservation of thek corresponding
to all the edges joining bothi and j . As a consequence, most of the usual restraints on
the momentum integration disappear in the limitd → ∞, and the calculation of many
diagrams is very much simplified by this change. One should note that the vertex collapse
does not alter the calculation over frequencies, which keep their conservation at all the
diagram vertices, even whend →∞.

Employing the cumulant expansion, Metzner has shown [12] that the single-particle
properties of the Hubbard model in the limitd →∞, can be described as that of independent
electrons ‘hopping between dressed atoms characterized by an effective GF’ [19]. A similar
derivation can be employed for the PAM, and the exact one-electron GF is given by the
family of diagrams in figure 1(a), but using an effective cumulantMeff

2,σ (ω) for the f-electron
vertices instead of the bare oneM0

2,σ (ω). The effective cumulantMeff
2,σ (ω) is given by the
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contribution of all the diagrams ofGσ(Rn,m = 0, ω) that cannot be separated by cutting
a single edge (usually called ‘irreducible diagrams’), whereGσ(Rn,m = 0, ω) is the exact
GF of the f-electrons in the real space representation forn = m. This property is only
valid in the limit d → ∞, so that all the diagrams that are not f.t.p.r have their vertices
collapsed until the associated embeddings are f.t.p.r. The exact GF can then be written

Gf,σ (k, ω) = Meff
2,σ (ω)

1

1− |V (k)|2Go
c,σ (k, ω)M

eff
2,σ (ω)

. (5.1)

A practical difficulty in the study of correlated electron systems with cumulant expansions,
is that the higher order cumulants rapidly become very laborious to calculate. To consider
in some way the higher order cumulants, we are studying the substitution ofMeff

2,σ (ω)

by an approximate quantityMat
2,σ (ω), derived from an exactly soluble model. To this

purpose we use the same PAM but in the atomic limit [20], i.e. when the hopping of the
c-electrons is eliminated by taking a conduction band of zero width. This attempt will be
discussed in another publication and the present work provides an essential guidance to that
study, by showing that all the cumulant diagrams present inMeff

2,σ (ω) are also present in
the approximateMat

2,σ (ω). Although the hopping is missing from theMat
2,σ (ω), the exact

solution of the conduction band shall appear in the ‘hopping between dressed atoms’ [12]
through theGo

c,σ (k, ω) in equation (5.1).
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Appendix A. Separation of vertices

In section 4 it is shown that the contribution of a ‘mother’ vacuum diagram that is not f.t.p.r.
can be estimated from those of several f.t.p.r. ‘daughter’ diagrams that are derived from
the original one. The daughter diagrams are obtained by separating the mother diagram
into several f.t.p.r. subdiagrams: a vacuum diagram plus several GF diagrams obtained by
adding external lines of the Bose type to the vertices that these separated diagrams have
in common with the mother diagram. To show the procedure, it is convenient to analyse
a simple case, like that of figure 5(a), and consider only a single vertex in real space,
as shown in figure A.1(a), assuming first that it does not belong to the vacuum daughter
diagram. Writing only that partP of the total contribution to the mother diagram that have

---> +

j a b

1 3 4 2 1 2 3 4

Figure A.1. Separation of a vertex with four edges into a pair of vertices with two edges each.
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parameters connected to the particular vertex under consideration, one obtains

P =
∑
j

∫
d1
∫

d2
∫

d3
∫

d4
∑
k1k2

∑
k3k4

exp[−i(k1− k2+ k3− k4) ·Rj ]

×V (1)V ∗(2)V (3)V ∗(4)G0
c(1)G

0
c(2)G

0
c(3)G

0
c(4)M

0
4(j, 1, 2, 3, 4) (A.1)

where theG0
c(s) are the c-electron GF, and the other abbreviations are those introduced

in section 4. The time or frequency dependence has been left out because it only plays a
trivial role in this proof. The corresponding contributionPa to one daughter diagram for
fixed values̀ 1, `2 of the internal lines joining the vertex and with an added external line
of momentumKa and parameters̀a is

Pa(Ka, `a, `1, `2) = 1√
N

∑
k1k2

∑
j

exp[−i(k1− k2+Ka) ·Rj ]

×M0
3(j, a,1, 2)V (1)V ∗(2)G0

c(1)G
0
c(2) (A.2)

and the contributionPb(Kb, `b, `3, `4) of the other daughter diagram is trivially obtained
by replacinga, 1, 2 by b, 3, 4.

TransformingPa(Ka, `a, `1, `2) to real space, the contribution associated to a siteRj
is given by

Pa(Rj , `a, `1, `2) = 1√
N

∑
Ka

exp(iKa ·Rj )Pa(Ka, `a)

=
∑
k1k2

exp[−i(k1− k2) ·Rj ]V (1)V ∗(2)G0
c(1)G

0
c(2)M

0
3(j, a,1, 2) (A.3)

and a similar expressionPb(Rj , `b) is obtained for the other daughter diagram. It is clear
that the only difference between the productPa(Rj , `a, `1, `2)Pb(Rj , `b, `3, `4) and the
term corresponding toRj and fixed`1, `2, `3, `4 in equation (A1) is given by the cumulants
M0, which are all independent on bothRj and the space dimensiond. It then follows that

P =
∫

d1
∫

d2
∫

d3
∫

d4
M0

4(j, 1, 2, 3, 4)

M0
3(j, a,1, 2)M0

3(j, b,3, 4)

×
∑
j

Pa(Rj , `a, `1, `2)Pb(Rj , `b, `3, `4) (A.4)

gives the dependence ofP on d.
When one of the two daughter diagrams is chosen as the vacuum one, it is necessary

to consider the corresponding contribution

P(Rj , `1, `2) =
∑
k1k2

exp[−i(k1− k2) ·Rj ]V (1)V ∗(2)G0
c(1)G

0
c(2)M

0
2(j, 1, 2) (A.5)

that was obtained replacingM0
3(j, a,1, 2) by M0

2(j, 1, 2) in equation (A.3): this is the
quantity that appears in the corresponding vertex of the vacuum daughter diagram. In this
case, instead of equation (A.4) one has the relation

P =
∫

d1
∫

d2
∫

d3
∫

d4
M0

4(j, 1, 2, 3, 4)

M0
2(j, 1, 2)M0

3(j, b,3, 4)

×
∑
j

P (Rj , `1, `2)Pb(Rj , `b, `3, `4). (A.6)

These are the relations employed in section 4 to prove that only embeddings that are f.t.p.r.
give a non-zero contribution, thus leading to the collapse of vertices when they cannot be
separated by cutting at most two edges.
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Appendix B. Diagrams that are not f.t.p.r.

In the procedure discussed in section 4 a ‘mother’ vacuum diagram that is not f.t.p.r. is
separated into several subdiagrams that have that property. As discussed before, one of the
daughter diagrams is chosen as a vacuum diagram, and the remaining ones are GF diagrams
obtained by adding external lines of the Bose type to the vertices that these GF diagrams
share with other daughter diagrams in the mother diagram. Let us consider one of the GF
daughter diagrams in the reciprocal space, with momentaKυ , indicesuυ and transitions
αυ(υ = 1, 2, . . . , n) assigned to then > 2 external vertices, where theαυ correspond to
pair of states with equal number of electrons, i.e. to operatorsXα of the Bose type. All
these external parameters will be indicated by{Kυ, `υ}, while {`}int will be used for the set
of ` associated with the internal edges joining all the external vertices. The contribution
corresponding to fixed{`}int of a split diagram is denoted byF({Kυ, `υ}, {`}int)/N

n/2,
where the factor 1/

√
N , associated to each external line joining an f-vertex (cf [2, Rule

3.7]), has been explicitly written. To transform fromKυ to position variablesRυ one
should calculate

F({Rυ}, {`}) = (
√
N)−n

∑
{Kυ }

(F ({Kυ, `υ}, {`}int)/N
n/2) exp

[
i
n∑
υ=1

Kυ ·Rυ

]
(B.1)

where{`} denotes all thè , both internal and external. From the translational invariance of
the system (or from wavevector conservation at all the vertices) it follows that

∑
υKυ = 0,

so that

F({Rυ}, {`}) =
{ n−1∏
υ=1

(
1

N

∑
Kυ

exp[iKυ(Rυ −Rn)]

)}
F({Kυ, `υ}, {`}int). (B.2)

In the two hybridization models considered in this work, the external wavevectorsKυ appear
in F({Kυ, `υ}, {`}int) only through the delta that gives the wavevector conservation at each
external vertex. The internal wavevectorsk appear through theEk,σ in Go

c,kσ (ω) (i.e. the c-
electron GF of equation (3.8)) and also in theVσ (k) = −(Vσ /t)EK,σ (cf equation (3.10)) for
the n.n. hybridization model. When the wavevector conservation at all vertices is considered
explicitly, the number of summations over internalk is reduced, but the arguments of the
Ek,σ become linear combinations of both the remaining external and internalk. To illustrate
this result, consider the diagram in figure B.1: applying momentum conservation one can
write

F({Ka, `b,Ka, `a}, {`1, `2, `3, `4}) =
∑
k1

M0
3(b, 1, 2)M0

3(a, 3, 4)|Vσ (k1)|2

×|Vσ (k1−Ka)|2Go
c,σ1
(k1)G

o
c,σ2
(k1−Ka) (B.3)

where the frequencies are not explicitly written because they don’t play any role in this
analysis. There is only a single summation overk1, because from the sum overk2 only
k2 = k1−Ka remains.

To study the general case, it is convenient to write (cf equation (2.4))

Ek,σ ≡ Eσ (k) = −
d∑
s=1

θs cos(aks) (B.4)

so thatF({Kυ, `υ}, {`}int) can be expanded in a series of theθs , puttingθs = θ = t/
√

2d at
the end of the derivation. To analyse the dependence ofF({Rυ}, {`}) with θ , it is convenient
to concentrate first on a given external vertexυ, and writeKυ = Q = (Q1, . . . ,Qd) and
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Kb Ka

k1

k2

l1

l2 l4

l3

Figure B.1. A simple f.t.p.r diagram. The conservation of momentk at the vertexb gives
k1− k2−Kb = 0 for ub = −1 and that at vertexa givesk2− k1+Ka = 0 for ua = +1, so
thatKa =Kb as should be expected from the translational invariance of the system. Only one
summation overk1 remains becausek2 = k1 −Ka .

Rυ −Rn = R = (R1, . . . , Rd). Equation (B.2) shows that for a given external vertexυ,
there is a

∑
Qs

exp(iQsRs) applied toF({Kυ, `υ}, {`}int) for each dimensions = 1, . . . , d
of the space, and when for a givens it is Rs 6= 0, all the terms independent ofθs in
the expansion ofF({Kυ, `υ}, {`}int) will cancel out (cf equation (3.17)). It then follows
that F({Rυ}, {`}) = O|θp|, wherep > p0 andp0 is the number of dimensions for which
there are non-zero componentss for at least one of then− 1 vectorsRυ −Rn. One can
then conclude that unless all theRυ coincide, theF({Rυ}, {`})is at least of O|θ | and it
vanishes whend →∞. This property was used to prove the collapse of vertices discussed
in section 4 for diagrams that are not f.t.p.r.
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